检测类型厂房检测
主要技术依据1建筑结构检测技术标准
主要技术依据2民用建筑可靠性鉴定标准
主要技术依据3房屋质量检测规程
主要技术依据4建筑变形测量规范
主要技术依据5钢结构现场检测技术标准
通际质量检测(上海)有限公司是专业从事房屋检测、桥梁检测、工程监测和环境检测的三方检测机构。通际质量拥有检验检测机构认定,以的*团队,的检测设备和*的核心技术,为机构、设计、施工单位提供科学的决策依据、技术咨询和解决方案。
本次受检厂房位于广东省东莞市,为单层混凝土排架结构,建造于2016年。目前拟在该厂房安装立体货架及平台,为了解该地坪承载力及相对高差是否满足要求,业主特委托我厂房检测中心对该厂房相对高差进行检测,并根据检测情况对承载力进行计算分析。
根据厂房质量检测的相关规定,针对受检厂房的特点和实际状况,本次厂房检测鉴定的主要内容包括:
(1)厂房建筑、结构概况调查;
(2)厂房使用情况调查;
(3)厂房完损情况调查;
(4)厂房建筑地坪厚度复核;
(5)厂房主体结构材料强度检测;
(6)厂房地坪不均匀沉降检测;
(7)根据现场检测结果,对受检区域地坪承载力进行计算分析,并出具检测报告,并提出处理建议。
厂房平面形状不规则,东西向长为138.00m,南北向宽为120.00m,总建筑面积约为16325.00㎡,建筑高度为14.20m,室内外高差为1.20m。厂房建筑地坪设计做法由下至上为回填土分层碾压密实(压实系数>0.93),200mm厚石粉稳定层(加入6%水泥)压实,200mm厚C25混凝土浇捣。厂房现主要作为仓库使用。该厂房东西向跨度主要为28.0m,南北向柱距主要为8.0m。钢筋混凝土柱截面尺寸主要为500mm×500mm。基础为柱下独立扩展基础。
本次厂房检测依据及判定标准:
(1)《工程测量规范》(GB50026-2007);
(2)《建筑结构检测技术标准》(GB/T50344-2004);
(3)《钻芯法检测混凝土强度技术规程》(JGJT 384-2016);
(4)《建筑变形测量规范》(JGJ/T8-2016);
(5)《混凝土结构工程施工质量验收规范》(GB50204-2015);
(6)《建筑地基基础设计规范》(GB50007-2011);
(7)《混凝土结构现场检测技术标准》(GB/T 50784-2013);
(8)《混凝土结构设计规范》(GB50010-2010)(2015年版);
(9)委托单位提供的设计图纸等资料。
通过对厂房进行地坪承载力检测及沉降检测,得出以下结论:
(1)受检厂房地坪混凝土层未见明显损伤,局部区域地坪面层开裂。
(2)检测结果表明,抽检建筑地坪混凝土厚度基本满足要求。
(3)检测结果表明,受检区域地坪混凝土强度等级推定为C25,符合设计图纸要求。
(4)检测结果表明,4~17/K~R轴区域地坪相对高差测量结果为-31mm~45mm之间。2~14/B~K轴区域地坪相对高差测量结果为-30mm~49mm之间。
(5)地坪承载力复核结果表明,仓库地坪允许荷载值为46kN/㎡。
建议聘请有的单位对地坪裂缝进行修复,在后续使用过程中对受检地坪进行定期维护及保养,若发现原结构使用过程中有异常情况并存在安全隐患时,应及时采取有效处理措施。
经调查发现,1#、2#车间现处于空置状态,综合楼现处于办公使用,配电房现处于配电使用,该批房屋建成后未发生过使用功能改变、火灾和使用荷载过大等情况。
为明确受检房屋损伤状况,现场对受检房屋建筑结构进行了损伤检测。经检测,1#车间、2#车间、综合楼、配电房现主体结构均基本完好,结构构件均无明显损坏,构件及连接节点均基本完好,其中1#车间主要损伤为局部内墙面粉刷脱落;2#车间主要损伤为局部内墙面渗水;综合楼主要损伤为局部外墙面渗水。
(1)受检1#车间、2#车间为混凝土排架结构,综合楼为混凝土框架结构,配电房为砖混结构房屋,总建筑面积约为5457㎡,建成后均未发生过使用功能改变、火灾和使用荷载过大等情况。
(2)测量结果表明,受检1#车间、2#车间柱倾斜及综合楼、配电房整体倾斜均满足规范限值要求。
(3)检测结果表明,受检1#车间、2#车间、综合楼、配电房主体结构均基本完好,结构构件均无明显损坏,构件及连接节点均基本完好,其中1#车间主要损伤为局部内墙面粉刷脱落;2#车间主要损伤为局部内墙面渗水;综合楼主要损伤为局部外墙面渗水。
(4)根据《房屋完损等级评定标准(试行)》(城住字(84)678号),受检1#车间、2#车间、综合楼、配电房结构部分、装修部分、设备部分均基本完好,故该批房屋均可评为基本完好房。
现场采用钻芯法对受检区域地坪建筑构造进行了抽检复核,检测结果表明,地坪构造做法与设计图纸基本相符,但各构造层的实测厚度与设计值存在一定的偏差,钢筋混凝土层实测厚度在170mm~280mm之间,干渣粉煤灰三渣基层实测厚度在260mm~340mm之间,为了解物流一期工程厂房9~17/A~P轴区域目前的完损状况,我司厂房检测工程师到现场进行了检测,检测结果表明,17/A~P轴及P/9~17轴室内地坪沿外墙方向普遍严重开裂,17/A~P轴围护填充墙与地梁相接处大量严重开裂,局部地梁变形缝两侧钢筋混凝土短柱钢筋保护层剥落、钢筋外露。现场采用WILD NA2型水准仪,对受检厂房地面进行沉降检测,**基准点为正值,基准点为负值。检测结果表明,1~9/A~P轴区域地坪相对高差测量结果除E区外墙边沉降较小(地坪**货架区域)外,其余区域均基本与原设计保持一致。9~17/A~P轴区域地坪相对高差测量结果基本与原设计呈相反的趋势,外墙边地坪**货架区域,货架区域沉降均较大,外墙边沉降较小。
原设计考虑场地排水等原因,7~11/G~H轴区域标高为+0.095m,厂房四周标高为±0.000m,设计高差达95mm;现场实测结果表明,7~11/G~H轴区域普遍厂房四周,厂房货架区域地坪下沉较明显。现场通过对厂房周边地圈梁检测发现,地圈梁结构基本完好,未见结构性裂缝。现场钻芯检测结果表明,建筑地坪层基本完好,压缩性较小。
现场检测发现,部分宽度较大的纵缝间的传力杆φ22@300钢筋断裂,表明板块间存在较大的相对变形。根据现场检测及调查情况,货架使用荷载较大,在重荷载长期作用下,原有地基产生了一定程度的压缩变形。综合以析,厂房四周地坪与墙体间裂缝产生的主要原因如下:厂房中心货架区域荷载较大,沿外墙四周荷载较小,长期作用下,厂房中心区域沉降较大,外墙周边区域沉降较小,从而引起周圈板块向厂房中心发生位移,导致厂房外墙四周地坪与外墙间开裂,且随时间增长,开裂程度加剧。厂房外墙水平裂缝为混凝土与砖墙接触面开裂,因为砖墙和混凝土材料热胀冷缩性能不同,在环境作用下引起开裂。
厂房四周地坪与墙体间裂缝产生的主要原因为厂房中心货架区域荷载较大,沿外墙四周荷载较小,从而引起周圈板块向厂房中心发生位移,导致厂房四周地坪开裂。厂房外墙水平裂缝为混凝土与砖墙接触面开裂,因为砖墙和混凝土材料热胀冷缩性能不同,在环境作用下引起开裂。
结合现场厂房检测及原因分析,对厂房提出如下处理意见及建议:
(1)建议聘请有的单位对厂房的地质情况进行补勘,为后续的地坪处理方案提供技术依据。
(2)结合地质勘察成果,并结合厂房实际使用情况,切实可行的地基处理方案。
(3)建议对局部地梁变形缝两侧钢筋混凝土短柱进行修补,对外露钢筋进行除锈处理,然后重新浇筑。
(4)建议对围护填充墙与地梁相接处的水平裂缝进行修补。
主要技术依据:
(1)《建筑结构检测技术标准》(GB/T50344-2004);
(2)《民用建筑可靠性鉴定标准》(GB50292-2015);
(3)《房屋质量检测规程》(DG/T08-79-2008);
(4)《建筑变形测量规范》(JGJ8-2016);
(5)《建筑地基基础设计规范》(GB50007-2011);
(6)《钢结构现场检测技术标准》(GB/T50621-2010);
(7)《建筑地面设计规范》(GB 50037-2013);
(8)《物流建筑设计规范》(GB 51157-2016);
一、承重检测
一般为工业建筑(厂房、仓库、生产车间及机房较多),为满足使用需求需在房屋楼面或其他承重构件上增加吊车、档案柜、机械设备、货柜等设备前(后)为了解建筑目前楼面的承载能力是否满足增加设备的安全使用要求的检测鉴定,并对不满足承载能力要求及安全使用要求的构件提供合理的加固处理建议。
二、承重检测
作为房屋安全鉴定里面的主要检测专项,承重检测主要以检测梁、板为主,柱为辅。承重检测主要是检测出楼面承载力,用承载力数据和原设计以及甲方需求的承载能力进行对比评判,得出楼面承载力能满足需求的结论或提供楼面承载力数值作为甲方使用维护的参考依据。
三、承重检测主要工作
承重检测的主要工作有以下:现场检测(抽芯、钢筋开凿/扫描、图纸复核/测绘)、混凝土强度测试、结构建模验算(2-3天)、对调查、查勘、检测、验算的数据资料进行全面分析,报告编写及审核。
为了数据的准确和报告的专业性*性,时间方面我们这边按现场完成后10个工作日出具报告。
钢结构焊接施工中存在的安全隐患分析,本文从近年来媒体曝光的一些钢结构焊接施工安全事故和中铁六局集团建筑安装有限公司施工的大中型钢结构焊接施工工程中检查发现的一些隐患为依据,结合钢结构工程施工特点、焊工的专业特点、工作环境和工作条件以及目前项目部的管理状况进行分析,发现钢结构焊接施工的易发事故主要有:触电、火灾和、高空坠落以及中等种类,具体原因分析如下:
焊接作业发生触电的原因:在实际的焊接过程中操作人员需要常常换焊条和调节焊接电流,而在换操作中焊工必须直接接触电极和较板,一般焊接电源是220V/380V,所以,一旦焊接作业中出现异常情况,比如操作者违章作业、劳动保护用品不合格、电气安全保护装置存在故障等,就很有可能发生触电,造成触电事故。并且若焊接场所是在金属容器内或者比较潮湿的地区,其触电的危险性较大。
由于焊机空载时二次绕组电压通常在60~90V之间,并不算很高的电压,因此很多电焊工都对其不够重视,但事实上其电压还是具有一定的危险性的,因为该电压过了规定安全电压36V。假设焊机空载电压为70V,人在潮湿/高温的环境内作业其电阻大概是1600Ω,此时若焊工直接接触钳口,那么焊工在电流的作用下回发生,导致触电事故发生。
由于焊接作业几乎都是在露天环境中进行的,且焊机、焊把线及电源线等多处在比较恶劣的环境内,再加上设备经常运行时间过规定,导致了电源线、电器线路绝缘老化,降低了其绝缘性能,在这种情况下很*出现触电事故。
-/gbafgif/-
http://shanghaijunce.b2b168.com