烟囱结构检测 宜昌烟囱安全性检测多久 锅炉烟囱检测
  • 烟囱结构检测 宜昌烟囱安全性检测多久 锅炉烟囱检测
  • 烟囱结构检测 宜昌烟囱安全性检测多久 锅炉烟囱检测
  • 烟囱结构检测 宜昌烟囱安全性检测多久 锅炉烟囱检测

产品描述

通际质量检测 行业类型高耸建筑检测 检测类型烟囱检测 服务区域全国各地 报价方式电询或面议
电厂脱硫设施经常会由于受场地条件限制,把吸收塔和烟囱二合一进行布置,其中下部设置吸收塔,上部设置烟囱排放烟气,方案具有占地小、流程简单、投资小、运营维护方便等优点。其结构为大直径薄壁钢高耸结构,塔体需开设大尺寸孔洞,内部还有浆液载荷、烟气压力等,结构受力较为复杂,故对烟囱及吸收塔进行结构强度和稳定性校核较为重要。
钢筋混凝土烟由于具有良好的受力性能,现在已经成为烟囱设计的主流选择。随着工业的发展、施工技术的提高以及对环境的控制要求,钢筋混凝土烟囱越来越高,其结构形式也变得越来越复杂。烟囱作为高耸构筑物,受地震影响较大,尤其是200m以上的高囱,其结构抗震安全性能不仅直接关系到附近建筑结构的安全,而且与城市抗震救灾生命线的功能息息相关。因此需要对复杂、高耸的异形烟囱构进行抗震性能分析和研究,从而设计人员好地对烟囱进行抗震设计。
目前,对于结构的抗震计算主要有两大类计算分析方法,即弹性方法和弹塑性方法。弹性方法,例如我国《建筑抗震设计规范》(G011-2010)(简称抗规)中采用的底部剪力法,其显著特点是简便、实用。但是考虑到结构在地作用下已进入塑性状态,弹性方法就不能准确地反映结构的响应。弹塑性方法,如逐步增量时程动力分析(IDA)方法,该方法以动力弹塑性时程分析为基础,能够反映结构在同一地震、不同地震强度作用下的抗震性能,因此可对结构的抗震性能作出相当完整、可靠的评价。
烟囱结构检测
某电厂1、2#机组烟囱高200米,为一座单筒钢筋混凝土烟囱,部烟气出口内直径为7.0米,1978年底设计,1979年开工建设,采用滑模施工,1982年4月建成投入使用。1989年~1990年间曾对该烟囱进行过普查,未发现明显缺陷。1995年,在日常检查中,发现烟囱筒身存在钢筋锈蚀、混凝土开裂、酥松现象,同年对裂缝进行了修补。2003年~2005年间电厂实施烟气脱硫改造项目,采用湿法脱硫,设烟气加热器GGH,2006年11月~2008年11月两炉相继投入使用。
增加脱硫装置后,可以脱去烟气中95%的SO2,但烟气中SO3脱除效率较低,脱硫后由于烟气温度降低,烟囱内较易产生结露现象,对烟囱本体具有较大的腐蚀性。该烟囱虽设有GGH,但情况仍不容乐观。进行烟气脱硫改造项目时,未对烟囱内部进行防腐改造,也没有采取任何防腐措施。原有防腐系统是否能适应脱硫后的烟气环境,在经过近两年的使用后以及未来服役期内,烟囱结构的腐蚀损伤情况均未知。
此外,对于烟囱本身来说,该烟囱从上世纪八十年代初开始使用,按照当时的国情和设计规范的实际情况,地震烈度依6度设计,而目前上海抗震设防烈度为7度,烟囱的设计使用年限为30年,用的是筒壁单侧配筋与300号混凝土(现行规范要求),该烟囱已经达到设计使用年限,其安全性和耐久性的现状情况未知。
现甲方拟对这两台发电机组进行综合改造,期望能延长到寿命20~30年,对烟囱,则要判断其现有状态及在新的脱硫脱硝条件下的长期安全性。所以必须搞清烟囱使用的现有损伤状况及实际承载力状态,对烟囱现有状态下的安全性、可靠性、耐久性进行全面评价。同时综合考虑防腐改造增加的荷载情况。根据相关标准给出处理意见及处理方案,以便采取相应措施进行加固、防腐或改造处理,确保烟囱结构的长期可持续安全正常使用。
烟囱结构检测
受检烟囱位于吉林省长春市,该烟囱建造于2006年,烟囱高度为50m,筒体底部直径为5.4m,部直径约为3.2m。该烟囱结构图纸大部分缺失烟囱筒体由烧结普通砖和水泥石灰混合砂浆砌筑而成,烟囱筒壁厚度在240~620之间,底部筒壁厚度约为620,部筒壁厚度为240。烟囱西侧外立面上设置有预埋式钢爬梯,北侧为后加钢结构楼梯,部设置防雷接地。
本次烟囱检测结果及损伤原因分析:
(1)经检测,烟囱筒壁西侧存在竖向裂缝,长约5m,砖墙灰缝风化普遍,烟囱部局部粉刷存在破损、脱落等现象。现有钢爬梯与平台与主体结构链接锚固情况基本完好,但爬梯、等部分钢结构涂层脱落、失效、钢结构构件表面锈蚀普遍;避雷针设置完整、连接可靠;烟道口无腐蚀、渗漏情况。
(2)材料强度检测结果表明,烟囱筒壁烧结砖抗压强度在21.3MPa~23.2MPa之间,达到MU10的要求;砂浆抗压强度推定值在19.5MPa~30.4MPa之间,达到5.0MPa的要求。
(3)变形检测结果表明,烟囱整体向东南方向倾斜,向东倾斜率为0.12‰,向南倾斜率为0.72‰,小于《建筑地基基础设计规范》(G007-2011)中规定的高耸结构基础的倾斜限值3.0‰(注:测量结果包括施工误差)。
现场检测结果表明,现有烟囱筒壁结构基本完好,烟囱部局部粉刷存在破损、保护层脱落等现象,部分位置存在竖向开裂,爬梯等部分钢结构涂层脱落、失效、钢结构构件表面锈蚀普遍;此部分损伤主要是由于温度变形、材料收缩、材料老化、年久失修等原因造成的。
烟囱结构检测
火力发电厂的烟囱、冷却塔和水塔等高耸建筑物在建造和运行时一旦发生倾斜,其后果是不言而喻的。同时,随着使用年限的延伸,因周围地形不均匀沉降、风吹日晒、自身反复热胀冷缩等原因,也会产生一定的倾斜变形,且不同高度变形量的大小和规律也不同。因此应定期对烟囱进行检测,以确保烟囱的安全运行。
传统的烟囱倾斜观测方法主要有前方交会法和竖直投点法两种。
1、前方交会法是通过在建筑物附近两个观测基点上架设仪器,利用前方交会原理测量观测点的坐标变化量,以确定其水平位移值及位移方向。优点是观测精度较高,缺点是精度由交会角的大小决定,一般要求交会角满足60°~ 120°,但监测现场往往受通视条件限制,难以满足图形条件的要求。
2、竖直投点法,放样出两条相互垂直的控制轴线作为性测量控制桩。在轴线控制点上安置全站仪,并在垂直于该轴线的烟囱边缘放置钢尺,用仪器将烟囱部边缘和底部边缘投放到钢尺上,设其读数为T ′1、T ′2 和F ′1、F ′2。将仪器移至另一轴线控制点上,按同样方法测量和计算出烟囱在该轴线上的偏移分量e2,此方法原理简单,观测精度也较高。但需在烟囱底部安置的水平读数设备,故对场地和通视条件要求较高,易影响观测精度。
另外,三点圆心监测法。根据烟囱周围已知控制点A 和B,利用免棱镜全站仪较坐标测量法,直接测量出观测点坐标,由坐标差值计算水平位移分量和位移方向,根据各个不同高度的观测圆和底部中心坐标,可以较方便地计算各点位移量和位移方向。实际工程中常采用增加观测组求均值的方法,以剔除粗差,提高测量精度和可靠性。
http://shanghaijunce.b2b168.com

产品推荐